Today’s lecture

- **Solving linear systems** $Ax = b$ using Gauss-Jordan elimination
- Numerical issues.
- **Well-conditioned** and **ill-conditioned** problems
- Example: Wilkinson’s polynomial
- Matrices, norms and **condition number**
- Iterative methods:
 - Convergence and spectral radius
 - Solving matrix equations iteratively
Linear systems

- In numerical analysis, we frequently encounter problems of the form

\[Ax = b \]

where \(A \) is an \(N \times N \) matrix, \(b \) is vector of known values, and \(x \) is a vector of unknowns.

- For example, in fitting a linear model to a data set, we found **normal equations** of this form: \((X^TX)\beta = (X^Ty) \).

- In this lecture we will examine:
 - A practical method to find numerical solutions to such equations;
 - A way to assess whether the system of equations is **ill-conditioned**, i.e., sensitive to small changes in \(A \) and \(b \).
Gauss-Jordan elimination (cf. Gaussian elimination) is a robust method for solving a system of linear equations

\[Ax = b \]

to find the solution \(x \) and the inverse matrix \(A^{-1} \).

Here \(A \) is an \(N \times N \) square matrix such that \(\det A \neq 0 \).

G-J elimination combines the following operations:

- Interchanging any pair of rows of the system,
- Multiplying all elements in a row by any scalar,
- Combining rows in arbitrary linear combinations.
Example

Apply Gauss-Jordan elimination to:

(i) find the unique solution \(\mathbf{x} \) to \(\mathbf{A}\mathbf{x} = \mathbf{b} \), where

\[
\mathbf{A} = \begin{pmatrix}
0 & 2 & 1 \\
2 & -1 & 1 \\
1 & 3 & 2
\end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix}
7 \\
3 \\
13
\end{pmatrix},
\]

(ii) find the inverse matrix \(\mathbf{A}^{-1} \).
Gauss-Jordan elimination

- Form the augmented matrix:

\[
\begin{pmatrix}
0 & 2 & 1 & 1 & 0 & 0 & 7 \\
2 & -1 & 1 & 0 & 1 & 0 & 3 \\
1 & 3 & 2 & 0 & 0 & 1 & 13
\end{pmatrix}
\]

- We want to eliminate coefficients in the **first column**. Swap the first two rows:

\[
\begin{pmatrix}
2 & -1 & 1 & 0 & 1 & 0 & 3 \\
0 & 2 & 1 & 1 & 0 & 0 & 7 \\
1 & 3 & 2 & 0 & 0 & 1 & 13
\end{pmatrix}
\]

- Divide the first row by 2.

\[
\begin{pmatrix}
1 & -1/2 & 1/2 & 0 & 1/2 & 0 & 3/2 \\
0 & 2 & 1 & 1 & 0 & 0 & 7 \\
1 & 3 & 2 & 0 & 0 & 1 & 13
\end{pmatrix}
\]
Gauss-Jordan elimination

- Subtract 1st row from 3rd row:

\[
\begin{bmatrix}
1 & -1/2 & 1/2 & 0 & 1/2 & 0 & 3/2 \\
0 & 2 & 1 & 1 & 0 & 0 & 7 \\
0 & 7/2 & 3/2 & 0 & -1/2 & 1 & 23/2
\end{bmatrix}
\]

- Multiply 3rd row by 4:

\[
\begin{bmatrix}
1 & -1/2 & 1/2 & 0 & 1/2 & 0 & 3/2 \\
0 & 2 & 1 & 1 & 0 & 0 & 7 \\
0 & 14 & 6 & 0 & -2 & 4 & 46
\end{bmatrix}
\]

- Subtract 7× 2nd row from the 3rd row. Divide 2nd row by 2.

\[
\begin{bmatrix}
1 & -1/2 & 1/2 & 0 & 1/2 & 0 & 3/2 \\
0 & 1 & 1/2 & 1/2 & 0 & 0 & 7/2 \\
0 & 0 & -1 & -7 & -2 & 4 & -3
\end{bmatrix}
\]
Gauss-Jordan elimination

- Add $\frac{1}{2} \times 3$rd row to the 2nd row. Add $\frac{1}{2} \times 3$rd row to the 1st row. Multiply 3rd row by -1.

$$
\begin{pmatrix}
1 & -1/2 & 0 & -7/2 & -1/2 & 2 & 0 \\
0 & 1 & 0 & -3 & -1 & 2 & 2 \\
0 & 0 & 1 & 7 & 2 & -4 & 3 \\
\end{pmatrix}
$$

- Add 1/2 of 2nd row to the 1st row:

$$
\begin{pmatrix}
1 & 0 & 0 & -5 & -1 & 3 & 1 \\
0 & 1 & 0 & -3 & -1 & 2 & 2 \\
0 & 0 & 1 & 7 & 2 & -4 & 3 \\
\end{pmatrix}
$$

- The middle values give the inverse matrix A^{-1}.
- The red values are the solution to $Ax = b$:

$$
x = 1, \quad y = 2, \quad z = 3.
$$
Row operations are straightforward in Python:

```python
import numpy as np
def swaprows(M, i, j):
    M[i-1, :], M[j-1, :] = M[j-1, :].copy(), M[i-1, :].copy()

 aug = np.matrix("0,2,1,1,0,0,7; 2,-1,1,0,1,0,3; 1,3,2,0,0,1,13")
 M = np.array(aug, dtype=np.float64)
 swaprows(M,1,2)
 M[0, :] = M[0, :] / 2.0
 M[2, :] = M[2, :] - M[0, :]
 M[2, :] = M[2, :] * 4
 M[2, :] = M[2, :] - 7 * M[1, :]
 M[1, :] = M[1, :] / 2
 M[1, :] = M[1, :] + M[2, :] / 2
 M[0, :] = M[0, :] + M[2, :] / 2
 M[2, :] = M[2, :]*(-1)
 M[0, :] = M[0, :] + M[1, :] / 2
 print(M[:, -1])
 print(M[:, 3:6])
```
Gauss-Jordan elimination

Gauss-Jordan method with partial pivoting: pseudo-code

1. Construct the augmented matrix. Set row number \(i = 1 \).
2. Find the row \(j \geq i \) with the largest absolute value in column \(i \). This is the pivot row. Swap rows \(i \) and \(j \) so that the pivot row becomes row \(i \).
3. Divide the pivot row by \(a_{ii} \) so that the new element in row \(i \), column \(i \) becomes 1.
4. Eliminate the entries in column \(i \) and rows \(j > i \) using linear combinations of the pivot row \(i \).
5. Increment the row number \(i \) by 1 and repeat, until the system is in upper diagonal form.
6. Use the last row \(i = N \) to eliminate all entries in the last column for all rows \(j < N \).
7. Use the second-to-last row to eliminate the second-to-last column entries.
8. Continue in this way until the left-hand part of the augmented matrix is the identity matrix.
9. Read off the inverse matrix \(A^{-1} \) and the solution \(x \).
Numerical issues

- The linear system $Ax = b$ is singular if $\det A = 0$. In this case there may be no solutions, or infinitely many.

- If $\det A \neq 0$ then a unique solution exists, in principle.

- In practice, at least two things can go wrong:
 1. Some of the equations are so close to linearly dependent that roundoff error renders them linearly dependent at some point in the solution process.
 2. If N is large, the accumulated roundoff errors in the process can swamp the true solution.

- The Gauss-Jordan method is reasonably stable, and reasonable efficient, provided that pivoting is used.
Suppose we have some equations with parameters λ_i ... and a solution represented by functions $f_k(\lambda_i)$.

We say that the problem is:

- **well-conditioned** if small changes in λ_i produce small changes in f_k.
- **ill-conditioned** if small changes in λ_i produce some large or non-smooth changes in f_k.

The condition number C is an attempt to quantify the sensitivity of the solution to changes in the parameters.

As small changes in parameters can be produced by numerical errors (e.g. round-off error), numerical solutions of ill-conditioned problems are **unreliable**.
Example: Wilkinson’s polynomial

- Consider the polynomial

\[P_n(x) = (x - 1)(x - 2) \ldots (x - n) = \prod_{k=1}^{n} (x - k) \]

- The equation \(P_n(x) = 0 \) has roots \(x = 1, 2, \ldots, n \).

- Now consider a slightly-perturbed polynomial, for example,

\[\tilde{P}_n(x) = P_n(x) + \epsilon x^{n-1}, \quad \epsilon \ll 1. \]

- How do the roots of \(\tilde{P}_n(x) \) differ from the roots of \(P_n(x) \)?

- Let us investigate by plotting the roots \(x_k \) as a function of \(\epsilon \), for the cases \(n = 10 \) and \(n = 15 \).
Example: Wilkinson’s polynomial

```python
import numpy as np
import matplotlib.pyplot as plt

n = 10

# Coefficients of Wilkinson's polynomial for n=10
a = np.array([1,-55,1320,-18150,157773,-902055,3416930,
              -8409500,12753576,-10628640,3628800], dtype=np.float64)

print "The unperturbed roots are : ", np.roots(a)

b = np.copy(a)  # for the modified coefficients
eps = np.linspace(0.0, 2.5e-4, 100)

for ep in eps:
    b[1] = M[1] + ep  # make a small change to x^{n-1} coefficient
    roots = np.roots(b)  # find the roots of the modified polynomial
    plt.plot(ep*np.ones(n), roots.real, '+')

plt.show()
```
Example: Wilkinson’s polynomial

Real part of roots of polynomial $P(x) = (x-1)(x-2)\ldots(x-10) + \epsilon x^9$

$n = 10$, real part of root
Example: Wilkinson’s polynomial

Imaginary part of roots of polynomial $P(x) = (x-1)(x-2)\ldots(x-10) + \epsilon x^9$

$n = 10$, imaginary part of root
Example: Wilkinson’s polynomial

Real part of roots of polynomial $P(x) = (x-1)(x-2)\ldots(x-15) + \epsilon x^{14}$

$n = 15$, real part of root
Example: Wilkinson’s polynomial

$n = 15$, imaginary part of root

$$P(x) = (x-1)(x-2)...(x-15) + \epsilon x^{14}$$
Roots of Wilkinson’s polynomial

- For $n = 15$ case, the first merger of roots occurs around $\epsilon \sim 10^{-7}$

- For $n = 20$ case, a tiny change $\epsilon \sim 10^{-10}$ has a large effect on at least one pair of roots.

- As n increases, the roots become extremely sensitive to the polynomial coefficients.
 \Rightarrow problem is ill-conditioned.

- Wilkinson used this polynomial to illustrate the ubiquity of ill-conditioned problems, and later commented on the impact of the discovery:

 “Speaking for myself I regard it as the most traumatic experience in my career as a numerical analyst.”
A cautionary tale

- Suppose we wished to find the eigenvalues λ of a large $n \times n$ matrix A.

- The eigenvalues are the roots of the characteristic polynomial $p(x)$ defined by

$$p(x) = \det (A - xl)$$

- As Wilkinson’s example shows, large-n polynomials can be ill-conditioned, even when the roots are not close together (i.e. even when eigenvalue problem is well-conditioned).
Consider again a linear system

\[Ax = b \]

We would like to be able to test, in practical cases, whether the system of equations is \textit{ill-conditioned}.

Even better, we would like to calculate a \textbf{condition number} \(C \) : the \textit{‘worst case’ ratio} of the relative change in output (\(x \)) to the relative change in input (\(A \) and \(b \)).
Example:

\[
\begin{pmatrix}
1 & 2 \\
2 & 3.999
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
4 \\
7.999
\end{pmatrix}
\]

Is this system well-conditioned?

- The solution is \(x = 2, \ y = 1 \).
- Now change the RHS slightly, to \(\begin{pmatrix} 4.001 \\ 7.998 \end{pmatrix} \), and recalculate.
- The new solution is \(x = -3.999, \ y = 4 \).
- A small change in \(b \) produced a **large** change in the solution \(\Rightarrow \) **ill-conditioned** system.
- How could we see this **without** computing the solutions?
import numpy as np
A = np.matrix("1 2 ; 2 3.999")
b = np.matrix("4 ; 7.999")
db = np.matrix("0.001 ; -0.001") # a small perturbation
sol0 = np.linalg.solve(A,b)
sol1 = np.linalg.solve(A,b+db)
print("Original solution:", sol0)
print("Perturbed solution:", sol1)

Original solution:
[[2.]
 [1.]]
Perturbed solution:
[[[-3.999]
 [4.]]

• How could we see this without finding the solutions?
Definition:

The **condition number** C for a matrix A is

$$C = \|A\| \|A^{-1}\|$$

where $\|A\|$ denotes the row sum norm of A.

Definition:

- The **row sum norm** of an $m \times n$ matrix A is defined as

$$\|A\| = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$$

where a_{ij} is the element in the ith row and jth column of A.

- i.e. for each row, compute the sum of the absolute values of its elements; then take the maximum of these sums; this is the row-sum norm.
Suppose we introduce some small change Δb in b, which produces a change Δx in the solution x.

We will now establish a key result:

$$\frac{||\Delta x||}{||x||} \leq C \frac{||\Delta b||}{||b||}$$
A small change Δb produces a change Δx in the solution x.

\[
\begin{align*}
Ax & = b, \quad \text{and} \\
A(x + \Delta x) & = b + \Delta b \\
\Rightarrow \quad A \Delta x & = \Delta b \\
\Rightarrow \quad \Delta x & = A^{-1} \Delta b
\end{align*}
\]

We make use of an inequality for the row-sum norm, which holds that for any matrix or vector B, C:

\[\|BC\| \leq \|B\| \|C\|\]

For example,

\[
\begin{align*}
\|b\| & = \|Ax\| \\
\Rightarrow \quad \|b\| & \leq \|A\| \|x\|
\end{align*}
\]
Similarly,

\[\|\Delta x\| \leq \|A^{-1}\| \|\Delta b\| \]

Thus,

\[\|b\| \|\Delta x\| \leq \|A\| \|A^{-1}\| \|x\| \|\Delta b\| \]

and so

\[\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq C \frac{\|\Delta b\|}{\|b\|} \]

where \(C \equiv \|A\| \|A^{-1}\| \).
We have shown that
\[\frac{\|\Delta x\|}{\|x\|} \leq C \frac{\|\Delta b\|}{\|b\|} \]

A matrix equation $Ax = b$ is said to be ill-conditioned if
\[C \gtrsim 10^n \]

where n is the number of equations.
Example:

Find the condition number of the matrix

\[A = \begin{pmatrix} 1 & 2 \\ 2 & 3.999 \end{pmatrix} \]
Solution:

- Determinant: \(\det A = 3.999 - 4 = -0.001 \)

- Matrix inverse:

 \[
 A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = -1000 \times \begin{pmatrix} 3.999 & -2 \\ -2 & 1 \end{pmatrix}
 \]

- Row-sum norms:

 \[
 \|A\| = \max(1 + 2, 2 + 3.999) = 5.999 \\
 \|A^{-1}\| = 1000 \times \max(3.999 + 2, 2 + 1) = 5999
 \]

- Condition number:

 \[
 \Rightarrow \ C = \|A\| \|A^{-1}\| = 35988
 \]

- \(C \approx 3.6 \times 10^4 > 10^2 \) \(\Rightarrow \ Ax = b \) is **ill-conditioned**.
def norm(A):
 r"""Returns the row sum norm of A."""
 rowsums = [abs(M[k,:]).sum() for k in range(A.shape[0])]
 return max(rowsums)

def cond(A):
 r"""Returns the condition number of A"""
 return norm(A)*norm(np.linalg.inv(A))

def wellcond(A):
 condA = cond(A)
 w = "well" if (condA < 10**(A.shape[0])) else "ill"
 print("A is " + w + "-conditioned: C = %e" % condA)

>>> wellcond(A)
A is ill-conditioned: C = 3.598800e+04
Iterative improvement

\[Ax = b \]

- Suppose \(A = A_0 + \Delta A \) where \(A_0 \) is some matrix whose inverse is known, \(B_0 \equiv A_0^{-1} \).

- Suppose we wanted to solve iteratively, i.e. without finding the inverse of \(A \) directly, or applying Gaussian elimination.

- Then, starting with an initial guess \(x_0 \), we may try an iterative approach:

\[
A_0 x = b - \Delta A \times
\Rightarrow x_{k+1} = B_0 \times (b - \Delta A \times x_k)
= Rx_k + c
\]

where \(R \equiv -B_0\Delta A \) is the residual matrix and \(c = B_0 b \).
Iterative improvement

\[x_{k+1} = Rx_k + c \]

- When do iterative methods of this type converge?
- Repeated application leads to

\[
\begin{align*}
 x_1 &= Rx_0 + c, \\
 x_2 &= R(Rx_0 + c) + c, \\
 \ldots &= \ldots \\
 x_n &= R^nx_0 + (I + R + R^2 + \ldots + R^{n-1})c
\end{align*}
\]

- For convergence, we require \(R^n \to 0 \) as \(n \to \infty \).
Spectral radius and convergence

Definition:
The **spectral radius** $\rho(R)$ of an $n \times n$ matrix R is given by the maximum magnitude of its eigenvalues λ_i:

$$\rho(R) = \max_{i=1 \ldots n} |\lambda_i|.$$

Theorem:

- $\lim_{n \to \infty} R^n = 0$ if and only if $\rho(R) < 1$

Thus an iterative method can be used iff R is ‘**small enough**’ that all of its eigenvalues have a magnitude of less than unity.

Iterative methods are used (e.g.) to efficiently solve the linear equations arising in **implicit methods**.
Example:

Let

\[A = \begin{pmatrix} 1.1 & 0.2 \\ -0.3 & 1.9 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \]

Solve the matrix equation \(Ax = b \) iteratively with

\[A_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \]
Example

Let \(B_0 = A_0^{-1} \)

\[
(A_0 + \Delta A)x = b
\]

\[
\Rightarrow (I + B_0 \Delta A) x = B_0 b
\]

\[
\Rightarrow x = -(B_0 \Delta A)x + B_0 b
\]

Turn into an iterative equation:

\[
x_{n+1} = Rx_n + c
\]

where \(R = -B_0 \Delta A \) and \(c = B_0 b \)

In this case, \(A_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \) \(\Rightarrow \) \(B_0 = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \) and

\[
\Delta A = \begin{pmatrix} 0.1 & 0.2 \\ -0.3 & -0.1 \end{pmatrix}.
\]
Example

```python
B0 = np.matrix("1 0 ; 0 0.5")
dA = np.matrix("0.1 0.2 ; -0.3 -0.1")
b = np.matrix("1; 2")
R = -np.dot(B0, dA)
c = np.dot(B0, b)
x0 = np.matrix("0 ; 1")
for k in range(13):
    print(k, x0.transpose())
x0 = R*x0 + c
```
Example

```
0 [[0 1]]
1 [[ 0.8  1.05]]
2 [[ 0.71  1.1725]]
3 [[ 0.6945  1.165125]]
4 [[ 0.697525  1.16243125]]
5 [[ 0.69776125  1.16275031]]
6 [[ 0.69767381  1.1628017 ]]  
7 [[ 0.69767228  1.16279116]]
8 [[ 0.69767454  1.1627904 ]]
9 [[ 0.69767447  1.1627907 ]]  
10 [[ 0.69767441  1.1627907 ]] 
11 [[ 0.69767442  1.1627907 ]] 
12 [[ 0.69767442  1.1627907 ]] 
```