MAS212 Scientific Computing and Simulation

Dr. Sam Dolan

School of Mathematics and Statistics, University of Sheffield

Autumn 2018

http://sam-dolan.staff.shef.ac.uk/mas212/

G18 Hicks Building s.dolan@sheffield.ac.uk

Today's lecture

- Numerical methods for solving ODEs
- Methods:
 - Euler's method
 - The midpoint method
 - Runge-Kutta methods
- Concepts:
 - Truncation error (local and global)
 - Order of accuracy
 - Stability and convergence

Euler's method

 Suppose we have some first-order ODE describing an initial value problem:

$$\frac{dx}{dt} = f(x,t) \qquad x(t_0) = x_0$$

• How do we solve the ODE numerically?

How do we ...

... find a sequence of numerical estimates $[x_0, x_1, x_2, \ldots x_n]$ at times $[t_0, t_1, t_2 \ldots t_n]$, where $t_0 < t_1 < t_2 < \ldots$, that are reasonable estimates of the exact sequence $[x(t_0), x(t_1), x(t_2), \ldots, x(t_n)]$ where x(t) is the **exact** solution of the ODE (which may be unknown).

We take small steps . . .

Euler's method

$$\frac{dx}{dt}=f(x,t) x(t_0)=x_0$$

- Suppose we know $x(t_k)$ and we want to estimate $x(t_{k+1})$, where $t_{k+1} = t_k + h$ and h is small : $0 < h \ll 1/f'$.
- Assume x(t) is locally 'smooth enough' in the vicinity of $t = t_k$ for a **Taylor series** expansion:

$$x(t_{k+1}) = x(t_k+h) = x(t_k) + h \left. \frac{dx}{dt} \right|_{t_k} + \frac{1}{2} h^2 \left. \frac{d^2x}{dt^2} \right|_{t_k} + \ldots + \frac{1}{m!} h^m \left. \frac{d^mx}{dt^m} \right|_{t_k} + \ldots$$

• Euler's method: Truncate the Taylor series after just two terms.

$$x(t_{k+1}) \approx x(t_k) + h \frac{dx}{dt}\Big|_{t_k}$$
$$\approx x(t_k) + h f(x(t_k), t_k).$$
$$\Rightarrow x_{k+1} = x_k + h f(x_k, t_k)$$

 i.e. use the derivative function f evaluated at the initial point to take one small step forward to t_{k+1} = t_k + h.

$$\frac{dx}{dt}=f(x,t) x(t_0)=x_0$$

Euler's method

$$x_{k+1} = x_k + h f(x_k, t_k)$$

Algorithm:

• Divide the domain $[t_0, t_f]$ into n equally-spaced intervals:

$$t_k = t_0 + kh, \qquad k \in \{0, 1, ..., n\}, \qquad h \equiv \frac{t_f - t_0}{n}.$$

- Start with the initial condition x₀ at t₀
- Apply $x_{k+1} = x_k + h f(x_k, t_k)$ once to get x_1 from x_0
- Now iterate (repeat) ...

Image from:
http://en.wikipedia.org/wiki/Euler_method

Example

Solve the initial value problem $\frac{dx}{dt} = x$, x(0) = 1, on the domain $t \in [0, 4]$ analytically and numerically

- (a) Using separation of variables to find the **exact** solution
- (b) Using Euler's method to find a numerical solution

(a)

$$\frac{dx}{dt} = x$$

$$\Rightarrow \int \frac{dx}{x} = \int dt$$

$$\Rightarrow \ln|x| = t + c$$

$$\Rightarrow x(t) = Ae^{t} \quad x(0) = 1 \quad \Rightarrow A = 1$$

$$x(t) = e^{t}$$

(b) Euler's method

• The sequence of numerical estimates x_0, x_1, \dots, x_n depends on the step size h.

 As h → 0, the numerical solution converges towards the exact solution ...but slowly!

(b) Euler's method (example code)

```
def Euler(n=10, tstart=0.0, tend=4.0):
       Apply Euler's method to ODE: dx/dt = x.
    n is the number of intervals in the domain [tstart, tend].
   ts = np.linspace(tstart, tend, n+1)
   h = (tend - tstart) / n
   xs = np.zeros(n+1)
   xs[0] = 1.0 # initial condition
   for k in range(n):
       xs[k+1] = xs[k] + h*xs[k]
   return ts, xs
```

(b) Euler's method (example code)

```
# Plot several curves, for various "n"
plt.xlabel('t'); plt.ylabel('x(t)')
for k in range(1,8):
    ts, xs = Euler(n = 10*k) # use 10, 20, ... 80 intervals
    plt.plot(ts, xs, '-o')
# Plot also the exact solution
ts = np.linspace(0.0, 4.0, 100)
xs = np.exp(ts)
plt.plot(ts, xs, lw=3, label='$\exp(x)$')
plt.legend(loc='upper left')
plt.show()
```

Error

- For h > 0 the Euler method gives an approximation of the exact solution x(t)
- i.e. a sequence of estimates x_k at times t_k that (we hope) converge to $x(t_k)$ as $h \to 0$
- How accurate are these estimates?
- Define error ϵ_k as difference between exact value $\bar{x}(t_k)$ and numerical estimate x_k :

$$\epsilon_k \equiv x_k - \bar{x}(t_k)$$

- Clearly, ϵ_k depends on grid point k and grid spacing h.
- Most often, the exact solution $\bar{x}(t)$ is **unknown**, but nevertheless we need to estimate the error.

Local truncation error

- In deriving Euler's method we truncated the Taylor series
- We may keep track of the order of the neglected terms using big-O notation.
- Let's take care to distinguish between

 x_k : the numerical estimate at $t = t_k$

 $\bar{x}(t_k)$: the exact solution at $t = t_k$

$$x_{k+1} = x_k + h f(x_k, t_k)$$

$$\Rightarrow x_{k+1} - \bar{x}(t_{k+1}) = x_k + h f(x_k, t_k) - \bar{x}(t_{k+1})$$

$$\Rightarrow \epsilon_{k+1} = x_k + h f(x_k, t_k) - (\bar{x}(t_k) + h f(x, t)|_{t_k} + O(h^2))$$

$$= x_k - \bar{x}(t_k) + h \{f(x_k, t_k) - f(\bar{x}(t_k), t_k)\} + O(h^2)$$

$$\Rightarrow \epsilon_{k+1} = \epsilon_k + h \{f(x_k, t_k) - f(\bar{x}(t_k), t_k)\} + O(h^2)$$

• If we assume perfect accuracy at previous step $(x_k = \bar{x}(t_k) \Rightarrow \epsilon_k = 0)$ then the first two terms vanish, and

$$\epsilon_{k+1} = O(h^2)$$

• We say: The **local truncation error** is $O(h^2)$, or 2nd order.

Global truncation error

$$\epsilon_{k+1} = \epsilon_k + h\{f(x_k, t_k) - f(\bar{x}(t_k), t_k)\} + O(h^2)$$

Consider the middle term more carefully:

$$f(x_{k}, t_{k}) - f(\bar{x}(t_{k}), t_{k}) = f(x_{k}, t_{k}) - f(x_{k} - \varepsilon_{k}, t_{k})$$

$$= f(x_{k}, t_{k}) - \left(f(x_{k}, t_{k}) - \varepsilon_{k} \frac{\partial f}{\partial x}\Big|_{x_{k}, t_{k}} + O(\varepsilon_{k}^{2})\right)$$

$$= \varepsilon_{k} \frac{\partial f}{\partial x}\Big|_{x_{k}, t_{k}} + O(\varepsilon_{k}^{2})$$

 As ε_k is O(h) or higher, it follows that the middle term is at O(h²) or higher, and so

$$\epsilon_{k+1} = \epsilon_k + O(h^2)$$

• What is the error after *n* steps of Euler method?

$$\epsilon_n = n \times O(h^2)$$
 (as $\epsilon_0 = 0$).

Total number of intervals n on fixed domain is inversely proportional to h

$$n = \frac{t_f - t_0}{h} \quad \Rightarrow \quad \boxed{\epsilon_n = O(h)}$$

For the Euler method:

- The **local** truncation error (LTE) is $O(h^2)$ i.e. 2nd order
- The **global** truncation error (GTE) is O(h) i.e. 1st order
- We say that Euler's method is a first-order method.
- This 'explains' why the convergence was slow.
- Much better methods are available!

Stability

- There is a more insidious problem than slow convergence
- ... numerical instability !

What is a numerical instability?

Generally, a spurious feature in a numerical solution, not present in the exact solution, that grows with time and dominates over the real, physical solution.

Exponentially-growing instabilities are the most common type.

- The Euler method is unstable in two cases
 - (i) $\frac{\partial f}{\partial x} > 0$
 - (ii) $h > 2/\left|\frac{\partial f}{\partial x}\right|$
- In case (i), the exponential growth of the instability is usually obscured by the growth of the physical solution.
- In case (ii), the instability is readily apparent.

Stability

Example:

Solve the initial value problem for various step sizes *h*

$$\frac{dx}{dt}=-10x, \quad x(0)=1,$$

```
tmax = 4.0
def Euler(n=10):
    ts = np.linspace(0.0, tmax, n+1)
    h = tmax / n
    xs = np.zeros(n+1)
    xs[0] = 1.0 # initial condition
    for k in range(n):
        xs[k+1] = xs[k] - 10.0*h*xs[k]
    return ts, xs
plt.xlabel('t'); plt.ylabel('x(t)')
plt.ylim(-1,2)
for k in range(1,8):
    ts, xs = Euler(n = 10*k)
    plt.plot(ts, xs, '-o')
ts = np.linspace(0.0, tmax, 100)
xs = np.exp(-10.0*ts)
plt.plot(ts, xs, lw=3)
plt.legend(loc='upper left')
plt.show()
```


For large intervals h, the numerical solution blows up (and oscillates)

- Another example: $\frac{dx}{dt} = -xg(t)$ where $g(t) = 1 + \tanh(t 20)$.
- Note logarithmic scale on y-axis
- All OK ... until gradient becomes large, around t = 20.

Stability of Euler method

$$x_{k+1} = x_k + h f(x_k, t_k)$$
 (*)

- Suppose that x_k differs from a solution to the *difference equation* (*) by small amount, δx_k .
- δx_k could be due to finite accuracy of the computer (i.e. rounding error $\sim 10^{-14}$)
- What happens to this error at the next step?

$$x_{k+1} + \delta x_{k+1} = x_k + \delta x_k + hf(x_k + \delta x_k, t_k)$$

= $x_k + \delta x_k + h \left(f(x_k, t_k) + \delta x_k \frac{\partial f}{\partial x} + \ldots \right)$

Subtracting the difference equation (*),

$$\delta x_{k+1} \approx \delta x_k + h \delta x_k \frac{\partial f}{\partial x}$$

$$\approx g \delta x_k \quad \text{where} \quad g \equiv 1 + h \frac{\partial f}{\partial x}.$$

If |g| > 1 then δx_k will grow exponentially with k

Stability of Euler method

• We found that the error δx_k obeys its own difference equation:

$$\delta x_{k+1} \approx g \, \delta x_k$$
 where $g \equiv 1 + h \frac{\partial f}{\partial x}$.

- If |g| > 1 then δx_k will grow exponentially with k
- Instability in two cases:

(i)
$$g > 1 \Leftrightarrow \frac{\partial f}{\partial x} > 0$$

(ii)
$$g < -1 \Leftrightarrow h > 2/\left|\frac{\partial f}{\partial x}\right|$$

■ ⇒ Euler method is badly flawed and should not be used!

The midpoint method for $\frac{dx}{dt} = f(x, t)$

- One drawback of the Euler method is that it is asymmetrical
- It uses the derivative at the start of the interval.
- Better to use derivative at the centre of the interval . . .
- ...i.e. at $t_{k+1/2} = t_k + \frac{1}{2}h$
- ... but how do we find $x_{k+1/2}$ in the centre?
- Q. How to estimate x at midpoint? A. Use an Euler step :

$$x_{k+1/2} = x_k + \frac{1}{2}h f(x_k, t_k)$$

 $x_{k+1} = x_k + h f(x_{k+1/2}, t_{k+1/2}).$

Or, written in one line,

$$x_{k+1} = x_k + h f(x_k + \frac{1}{2}h f(x_k, t_k), t_k + \frac{1}{2}h)$$

Example

Use the midpoint method

$$x_{k+1} = x_k + h f(x_k + \frac{1}{2}h f(x_k, t_k), t_k + \frac{1}{2}h)$$

to solve the equation of simple harmonic motion

$$\ddot{x} + x = 0,$$
 $x(0) = 1,$ $\dot{x}(0) = 0$

• The second-order SHM equation is equivalent to two first-order ODEs:

$$\dot{x} = y$$
, $\dot{y} = -x$, $x(0) = 1$, $y(0) = 0$.

 We may apply the method with any number of dependent variables x,y,....

Code example:

```
def midpoint(tmin=0.0, tmax=20.0, n=100):
    """The midpoint method applied to the SHM equation.
     dx/dt = y, dy/dt = -x'''''
    ts = np.linspace(tmin, tmax, n+1)
   h = (tmax - tmin)/n
   xs = np.zeros(n+1); ys = np.zeros(n+1)
    xs[0] = 1.0; ys[0] = 0.0
    for k in range(n):
        x1 = xs[k] + 0.5*h*ys[k] # midpoint estimate
       y1 = ys[k] - 0.5*h*xs[k]
       xs[k+1] = xs[k] + h*y1
       ys[k+1] = ys[k] - h*x1
    return ts, xs, ys
```


Exercise

Show that the midpoint method is 2nd-order accurate.

That is: show that the global truncation error is $O(h^2)$.

Exercise

Determine whether the midpoint method is stable.

Runge-Kutta methods

Explicit Runge-Kutta methods

Recurrence relation:

$$x_{j+1} = x_j + \sum_{i=1}^{n} b_i k_i$$

where

$$k_{1} = h f(x_{j}, t_{j})$$

$$k_{2} = h f(x_{j} + a_{21}k_{1}, t_{j} + c_{2}h)$$

$$k_{3} = h f(x_{j} + a_{31}k_{1} + a_{32}k_{2}, t_{j} + c_{3}h)$$
...
$$k_{s} = h f(x_{j} + a_{s1}k_{1} + a_{s2}k_{2} + ... + a_{s,s-1}k_{s-1}, t_{j} + c_{s}h)$$

- The midpoint method is a member of a family of methods that use intermediate estimates in a systematic way.
- s is the order of the method
- A method is specified by the coefficients b_i, c_i and a_{ij}.

Runge-Kutta methods

- A method is specified by the coefficients b_i, c_i and a_{ij}.
- Butcher tableau are used to give these coefficients:

Example: Midpoint method

Runge-Kutta methods

 The most well-used version is the classical Runge-Kutta method or RK4 method:

- This is a fourth-order accurate method.
- odeint implements this method.