
MAS212 Scientific Computing and Simulation

Dr. Sam Dolan

School of Mathematics and Statistics,
University of Sheffield

Autumn 2018

http://sam-dolan.staff.shef.ac.uk/mas212/

G18 Hicks Building
s.dolan@sheffield.ac.uk

http://sam-dolan.staff.shef.ac.uk/mas212/

Today’s lecture

Numerical methods for solving ODEs

Methods:

1 Euler’s method

2 The midpoint method

3 Runge-Kutta methods

Concepts:

Truncation error (local and global)

Order of accuracy

Stability and convergence

Euler’s method

Suppose we have some first-order ODE describing an
initial value problem:

dx
dt

= f (x , t) x(t0) = x0

How do we solve the ODE numerically?

How do we . . .
. . . find a sequence of numerical estimates [x0, x1, x2, . . . xn] at times
[t0, t1, t2 . . . tn], where t0 < t1 < t2 < . . ., that are reasonable estimates of the
exact sequence [x(t0), x(t1), x(t2), . . . , x(tn)] where x(t) is the exact solution
of the ODE (which may be unknown).

We take small steps . . .

Euler’s method

dx
dt

= f (x , t) x(t0) = x0

Suppose we know x(tk) and we want to estimate x(tk+1),
where tk+1 = tk + h and h is small : 0 < h � 1/f ′.

Assume x(t) is locally ‘smooth enough’ in the vicinity of t = tk for a
Taylor series expansion:

x(tk+1) = x(tk +h) = x(tk)+h
dx
dt

∣∣∣∣∣
tk

+
1
2

h2 d2x
dt2

∣∣∣∣∣
tk

+. . .+
1

m!
hm dmx

dtm

∣∣∣∣∣
tk

+. . .

Euler’s method: Truncate the Taylor series after just two terms.

x(tk+1) ≈ x(tk) + h
dx
dt

∣∣∣∣∣
tk

≈ x(tk) + h f (x(tk), tk) .

⇒ xk+1 = xk + hf (xk , tk)

i.e. use the derivative function f evaluated at the initial point to take one
small step forward to tk+1 = tk + h.

dx
dt

= f (x , t) x(t0) = x0

Euler’s method

xk+1 = xk + h f (xk , tk)

Algorithm:
Divide the domain [t0, tf] into n equally-spaced intervals:

tk = t0 + kh, k ∈ {0,1, . . . ,n}, h ≡
tf − t0

n
.

Start with the initial condition x0 at t0

Apply xk+1 = xk + h f (xk , tk) once to get x1 from x0

Now iterate (repeat) . . .

Image from:
http://en.wikipedia.org/wiki/Euler_method

http://en.wikipedia.org/wiki/Euler_method

Example

Solve the initial value problem
dx
dt

= x , x(0) = 1,
on the domain t ∈ [0,4] analytically and numerically

(a) Using separation of variables to find the exact solution

(b) Using Euler’s method to find a numerical solution

(a)

dx
dt

= x

⇒

∫
dx
x

=

∫
dt

⇒ ln |x | = t + c
⇒ x(t) = Aet x(0) = 1 ⇒ A = 1

x(t) = et

(b) Euler’s method
The sequence of numerical estimates x0, x1 . . . , xn depends on the step
size h.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0

10

20

30

40

50

60

x
(t

)

exp(x)

As h→ 0, the numerical solution converges towards the exact solution
. . . but slowly!

(b) Euler’s method (example code)

def Euler(n=10, tstart=0.0, tend=4.0):

""" Apply Euler’s method to ODE: dx/dt = x.

n is the number of intervals in the domain [tstart, tend]."""

ts = np.linspace(tstart, tend, n+1)

h = (tend - tstart) / n

xs = np.zeros(n+1)

xs[0] = 1.0 # initial condition

for k in range(n):

xs[k+1] = xs[k] + h*xs[k]

return ts, xs

(b) Euler’s method (example code)

Plot several curves, for various "n"

plt.xlabel(’t’); plt.ylabel(’x(t)’)

for k in range(1,8):

ts, xs = Euler(n = 10*k) # use 10, 20, ... 80 intervals

plt.plot(ts, xs, ’-o’)

Plot also the exact solution

ts = np.linspace(0.0, 4.0, 100)

xs = np.exp(ts)

plt.plot(ts, xs, lw=3, label=’$\exp(x)$’)

plt.legend(loc=’upper left’)

plt.show()

Error

For h > 0 the Euler method gives an approximation of the
exact solution x(t)

i.e. a sequence of estimates xk at times tk that (we hope)
converge to x(tk) as h→ 0

How accurate are these estimates?

Define error εk as difference between exact value x̄(tk)
and numerical estimate xk :

εk ≡ xk − x̄(tk)

Clearly, εk depends on grid point k and grid spacing h.

Most often, the exact solution x̄(t) is unknown, but
nevertheless we need to estimate the error.

Local truncation error
In deriving Euler’s method we truncated the Taylor series

We may keep track of the order of the neglected terms using big-O
notation.

Let’s take care to distinguish between
xk : the numerical estimate at t = tk

x̄(tk) : the exact solution at t = tk

xk+1 = xk + h f (xk , tk)

⇒ xk+1 − x̄(tk+1) = xk + h f (xk , tk) − x̄(tk+1)

⇒ εk+1 = xk + h f (xk , tk) −
(
x̄(tk) + h f (x , t)

∣∣∣
tk

+ O(h2)
)

= xk − x̄(tk) + h
{
f (xk , tk) − f (x̄(tk), tk)

}
+ O(h2)

⇒ εk+1 = εk + h
{
f (xk , tk) − f (x̄(tk), tk)

}
+ O(h2)

If we assume perfect accuracy at previous step (xk = x̄(tk)⇒ εk = 0)
then the first two terms vanish, and

εk+1 = O(h2)

We say: The local truncation error is O(h2), or 2nd order.

Global truncation error

εk+1 = εk + h
{
f (xk , tk) − f (x̄(tk), tk)

}
+ O(h2)

Consider the middle term more carefully:

f (xk , tk) − f (x̄(tk), tk) = f (xk , tk) − f (xk − εk , tk)

= f (xk , tk) −

(
f (xk , tk) − εk

∂f
∂x

∣∣∣∣∣
xk ,tk

+ O
(
ε2

k

))
= εk

∂f
∂x

∣∣∣∣∣
xk ,tk

+ O
(
ε2

k

)
As εk is O(h) or higher, it follows that the middle term is at O(h2) or
higher, and so

εk+1 = εk + O
(
h2

)
What is the error after n steps of Euler method?

εn = n × O
(
h2

)
(as ε0 = 0) .

Total number of intervals n on fixed domain is inversely proportional to h

n =
tf − t0

h
⇒ εn = O (h)

For the Euler method:

The local truncation error (LTE) is O(h2) i.e. 2nd order

The global truncation error (GTE) is O(h) i.e. 1st order

We say that Euler’s method is a first-order method.

This ‘explains’ why the convergence was slow.

Much better methods are available!

Stability

There is a more insidious problem than slow convergence
. . . numerical instability !

What is a numerical instability?
Generally, a spurious feature in a numerical solution, not present in the exact
solution, that grows with time and dominates over the real, physical solution.

Exponentially-growing instabilities are the most common type.

The Euler method is unstable in two cases
(i) ∂f

∂x > 0
(ii) h > 2/

∣∣∣ ∂f
∂x

∣∣∣
In case (i), the exponential growth of the instability is
usually obscured by the growth of the physical solution.

In case (ii), the instability is readily apparent.

Stability

Example:

Solve the initial value problem
dx
dt

= −10x , x(0) = 1,
for various step sizes h

tmax = 4.0

def Euler(n=10):

ts = np.linspace(0.0, tmax, n+1)

h = tmax / n

xs = np.zeros(n+1)

xs[0] = 1.0 # initial condition

for k in range(n):

xs[k+1] = xs[k] - 10.0*h*xs[k]

return ts, xs

plt.xlabel(’t’); plt.ylabel(’x(t)’)

plt.ylim(-1,2)

for k in range(1,8):

ts, xs = Euler(n = 10*k)

plt.plot(ts, xs, ’-o’)

ts = np.linspace(0.0, tmax, 100)

xs = np.exp(-10.0*ts)

plt.plot(ts, xs, lw=3)

plt.legend(loc=’upper left’)

plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x
(t

)

exp(−10x)

For large intervals h, the numerical solution blows up (and
oscillates)

0 10 20 30 40 50 60

t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012

x
(t

)

Instability in Euler method for dx/dt=−xg(t)

Another example:
dx
dt

= −xg(t) where g(t) = 1 + tanh(t − 20).

Note logarithmic scale on y -axis
All OK . . . until gradient becomes large, around t = 20.

Stability of Euler method

xk+1 = xk + h f (xk , tk) (∗)

Suppose that xk differs from a solution to the difference equation (∗) by
small amount, δxk .

δxk could be due to finite accuracy of the computer (i.e. rounding error
∼ 10−14)

What happens to this error at the next step?

xk+1 + δxk+1 = xk + δxk + hf (xk + δxk , tk)

= xk + δxk + h
(
f (xk , tk) + δxk

∂f
∂x

+ . . .

)
Subtracting the difference equation (∗),

δxk+1 ≈ δxk + h δxk
∂f
∂x

≈ g δxk where g ≡ 1 + h
∂f
∂x
.

If |g| > 1 then δxk will grow exponentially with k

Stability of Euler method

We found that the error δxk obeys its own difference equation:

δxk+1 ≈ g δxk where g ≡ 1 + h
∂f
∂x
.

If |g| > 1 then δxk will grow exponentially with k

Instability in two cases:

(i) g > 1 ⇔
∂f
∂x > 0

(ii) g < −1 ⇔ h > 2/
∣∣∣ ∂f
∂x

∣∣∣
⇒ Euler method is badly flawed and should not be used!

The midpoint method for dx
dt = f (x , t)

One drawback of the Euler method is that it is asymmetrical

It uses the derivative at the start of the interval.

Better to use derivative at the centre of the interval . . .

. . . i.e. at tk+1/2 = tk + 1
2 h

. . . but how do we find xk+1/2 in the centre?

Q. How to estimate x at midpoint? A. Use an Euler step :

xk+1/2 = xk + 1
2 h f (xk , tk)

xk+1 = xk + h f (xk+1/2, tk+1/2).

Or, written in one line,

xk+1 = xk + h f
(
xk + 1

2 h f (xk , tk), tk + 1
2 h

)

Example
Use the midpoint method

xk+1 = xk + h f
(
xk + 1

2h f (xk , tk), tk + 1
2h

)
to solve the equation of simple harmonic motion

ẍ + x = 0, x(0) = 1, ẋ(0) = 0

The second-order SHM equation is equivalent to two first-order ODEs:

ẋ = y , ẏ = −x , x(0) = 1, y(0) = 0.

We may apply the method with any number of dependent variables
x , y ,

Code example:

def midpoint(tmin=0.0, tmax=20.0, n=100):

"""The midpoint method applied to the SHM equation.

dx/dt = y, dy/dt = -x"""

ts = np.linspace(tmin, tmax, n+1)

h = (tmax - tmin)/n

xs = np.zeros(n+1); ys = np.zeros(n+1)

xs[0] = 1.0; ys[0] = 0.0

for k in range(n):

x1 = xs[k] + 0.5*h*ys[k] # midpoint estimate

y1 = ys[k] - 0.5*h*xs[k]

xs[k+1] = xs[k] + h*y1

ys[k+1] = ys[k] - h*x1

return ts, xs, ys

0 5 10 15 20

t

6

4

2

0

2

4

6

8
x
(t

)
Euler method
Midpoint method
exact

Exercise
Show that the midpoint method is 2nd-order accurate.

That is: show that the global truncation error is O(h2).

Exercise
Determine whether the midpoint method is stable.

Runge-Kutta methods

Explicit Runge-Kutta methods
Recurrence relation:

xj+1 = xj +
∑
i=1

biki

where

k1 = h f (xj , tj)

k2 = h f (xj + a21k1, tj + c2h)

k3 = h f (xj + a31k1 + a32k2, tj + c3h)

. . .

ks = h f (xj + as1k1 + as2k2 + . . .+ as,s−1ks−1, tj + csh)

The midpoint method is a member of a family of methods that use
intermediate estimates in a systematic way.

s is the order of the method

A method is specified by the coefficients bi , ci and aij .

Runge-Kutta methods

A method is specified by the coefficients bi , ci and aij .

Butcher tableau are used to give these coefficients:

0
c2 a21

c3 a31 a32

.
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Example: Midpoint method

0
1/2 1/2

0 1

Runge-Kutta methods

The most well-used version is the classical Runge-Kutta method or
RK4 method :

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

This is a fourth-order accurate method.

odeint implements this method.

