
MAS212 Scientific Computing and Simulation

Dr. Sam Dolan

School of Mathematics and Statistics,
University of Sheffield

Autumn 2018

http://sam-dolan.staff.shef.ac.uk/mas212/

G18 Hicks Building
s.dolan@sheffield.ac.uk

http://sam-dolan.staff.shef.ac.uk/mas212/

Today’s lecture

Scientific computing modules:
numpy

matplotlib

scipy

Differential equations:
Phase portraits; equilibria; limit cycles.

Non-linear ODEs: 3 examples:

1 Logistic equation (1D)

2 Predator-prey equation (2D autonomous conservative)

3 van der Pol equation (2nd-order)

SciPy

What is SciPy?
SciPy is a collection of mathematical algorithms and
convenience functions built on the Numpy extension of Python.

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import scipy as sp

Tutorial:
http://docs.scipy.org/doc/scipy-dev/reference/

tutorial/index.html

http://docs.scipy.org/doc/scipy-dev/reference/tutorial/index.html
http://docs.scipy.org/doc/scipy-dev/reference/tutorial/index.html

SciPy

Various useful modules in the scipy package:

sp.special : special functions (Bessel, Legendre,
Hypergeometric, etc).

sp.integrate : for integrating functions and sets of ODEs

sp.optimize : curve fitting, minimization, etc.

sp.interpolate : interpolation, splines, etc.

sp.fftpack : Fourier transforms.

sp.linalg : Linear algebra.

We will solve differential equations with
scipy.integrate.odeint

Ordinary differential equations

Here is an example of an ordinary differential equation
(ODE):

dx
dt

= x2
− x − 1

x is the dependent variable, and t is the independent
variable.

a specific solution x(t) is an integral curve of the ODE.

to find an integral curve, we specify an initial condition,
e.g.

x(t = 0) = 1

Ordinary differential equations

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

t

x

Here is the gradient field dx
dt at each point in the flow

Ordinary differential equations

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

t

x

Here is an integral curve with initial condition x(0) = 0

Ordinary differential equations (ODEs)
ODEs have one independent variable, t say
There may be several dependent variables
xi = {x1(t), x2(t), . . .}, and . . .
a set of functions Fj relating x and its derivatives,

Fj(xi , ẋi , ẍi , . . . ; t) = 0

where ẋi =
dxi
dt , ẍi =

d2xi
dt2 , etc.

Order refers to highest derivative: k th order⇔ dk x
dtk

Dimension refers number of dependent variables
x = [x1 . . . xd], and the number of independent equations.

Autonomous ⇔ Fj have no explicit dependence on t

Linear if Fj has only linear dependence on xi , ẋi , . . . and
their combinations. Otherwise it is non-linear.

Linear⇒ superposition principle⇒ ‘Easy’.

Ordinary differential equations (ODEs)
ODEs have one independent variable, t say
There may be several dependent variables
xi = {x1(t), x2(t), . . .}, and . . .
a set of functions Fj relating x and its derivatives,

Fj(xi , ẋi , ẍi , . . . ; t) = 0

where ẋi =
dxi
dt , ẍi =

d2xi
dt2 , etc.

Order refers to highest derivative: k th order⇔ dk x
dtk

Dimension refers number of dependent variables
x = [x1 . . . xd], and the number of independent equations.

Autonomous ⇔ Fj have no explicit dependence on t

Linear if Fj has only linear dependence on xi , ẋi , . . . and
their combinations. Otherwise it is non-linear.

Linear⇒ superposition principle⇒ ‘Easy’.

Ordinary differential equations

dx
dt

= x2
− x − 1

This example is . . .

. . . first-order, as dx/dt is the highest derivative

. . . one-dimensional, as x is the only dependent variable

. . . autonomous, as the rate of change dx/dt does not
depend on the independent variable t

. . . non-linear, because of the non-linear term x2 on the
right-hand side.

1D autonomous equation
Consider the 1st-order autonomous case:

dx
dt

= f (x)

Solution typically found by separation of variables
Divide by f (x) and integrate∫

dx
f (x)

= t + c

Some cases can be solved exactly, e.g,

f (x) = x ⇒ ln(x) = t + c ⇒ x(t) = Aet

What if integral can’t be found analytically?
Integrate numerically and invert to find x(t)? No.
Numerically solve the differential equation with odeint.

1D autonomous equation: example

The Logistic Equation is a 1st order autonomous ODE:

dx
dt

= x(1 − x), x(0) = x0

It has the exact solution (show):

x(t) =
1

1 + Ae−t .

(Here A = 1/x0 − 1)

1D autonomous equation: example

dx
dt

= x(1 − x), x(0) = x0

import matplotlib.pyplot as plt

from scipy.integrate import odeint

def logistic(x, t):

"""dx/dt for the logistic equation"""

return x*(1 - x)

ts = np.linspace(0.0, 10.0, 100) # values of independent variable

x0 = 0.5 # initial condition, x(0) = x0

xs = odeint(logistic, x0, ts) # integrates the ODE

’odeint’ returns an array of ’x’ values, at the times in ts.

plt.xlabel(’t’, fontsize=16); plt.ylabel(’x’, fontsize=16)

plt.plot(ts, xs)

1D autonomous equation: example

dx
dt

= x(1 − x), x(0) = x0

0 2 4 6 8 10
t

0.5

0.6

0.7

0.8

0.9

1.0

x

Here x0 = 0.5. Not very interesting . . .
Let’s plot curves for several initial conditions . . .

1D autonomous equation: example

dx
dt

= x(1 − x), x(0) = x0

Plot curves for several initial conditions

ics = np.arange(0.0, 2.01, 0.1) # a list of initial conditions

for x0 in ics:

xs = odeint(logistic, x0, ts)

plt.plot(ts, xs)

1D autonomous equation: example

0 1 2 3 4 5 6

t

0.0

0.5

1.0

1.5

2.0

x

Two equilibrium positions: x = 0 and x = 1.

x = 0 is an unstable equilibrium

x = 1 is a stable equilibrium

2D autonomous equations

Now consider a first order system with two dependent
variables, x and y ,

dx
dt

= f (x , y ; t),

dy
dt

= g(x , y ; t).

System is autonomous iff f and g do not depend on t

Example: Modelling the populations of rabbits and foxes

2D autonomous equations: example

Predator-prey equations
Also known as Lotka-Volterra equations, the predator-prey equations are a
pair of coupled first-order non-linear ordinary differential equations.

They represent a simplified model of the change in populations of two species
which interact via predation. For example, foxes (predators) and rabbits
(prey). Let x and y represent rabbit and fox populations, respectively. Then

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

Here a, b, c and d are parameters, which are assumed to be positive.

Predator-prey equations

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

def dZ_dt(Z, t, a=1, b=1, c=1, d=1):

a,b,c,d are optional arguments.

x, y = Z[0], Z[1]

return [x*(a - b*y), -y*(c - d*x)]

ts = np.linspace(0, 12, 100)

Z0 = [1.5, 1.0] # initial conditions

Zs = odeint(dZ_dt, Z0, ts, args=(1,1,1,1))

use optional argument ’args’ to pass parameters to dZ_dt

prey = Zs[:,0] # first column

predators = Zs[:,1] # second column

Predator-prey equations

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

Let’s plot ’rabbit’ and ’fox’ populations as a function of time

plt.plot(ts, prey, "+", label="Rabbits")

plt.plot(ts, predators, "x", label="Foxes")

plt.xlabel("Time", fontsize=14)

plt.ylabel("Population", fontsize=14)

plt.legend();

Predator-prey equations

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

0 2 4 6 8 10 12

Time

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

P
o
p
u
la

ti
o
n

Rabbits

Foxes

Predator-prey equations: Phase plot

The ODEs are autonomous: no explicit dependence on t

Phase portrait: Plot x vs y (instead of x , y vs t).

One curve for each initial condition

Curves will not cross, in general

fig = plt.figure()

fig.set_size_inches(6,6) # Square plot, 1:1 aspect ratio

ics = np.arange(1.0, 3.0, 0.1) # initial conditions

for r in ics:

Z0 = [r, 1.0]

Zs = odeint(dZ_dt, Z0, ts)

plt.plot(Zs[:,0], Zs[:,1], "-")

plt.xlabel("Rabbits", fontsize=14)

plt.ylabel("Foxes", fontsize=14)

Predator-prey equations: Phase plot

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rabbits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fo
x
e
s

Curves do not cross

Closed curves⇔ Periodic solutions

Equilibrium at x = y = 1 ⇒ ẋ = ẏ = 0

Predator-prey equations: A conservation law

Exercise: Show that h is constant along an integral curve of
the Lotka-Volterra equations, where

h(x , y) = a ln y − by + c ln x − dx

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

The Van der Pol oscillator
The (undriven) Van der Pol oscillator is a non-conservative
oscillator with non-linear damping, satisfying

ẍ − a(1 − x2)ẋ + x = 0

A second-order ODE with one parameter a
|x | > 1 : loses energy
|x | < 1 : absorbs energy

Originally, a model for an electric circuit with a vacuum
tube

Used to model biological processes such as heart beat,
circadian rhythms, biochemical oscillators, and pacemaker
neurons.

Van der Pol oscillator

ẍ − a(1 − x2)ẋ + x = 0

First-order reduction:
Any second-order equation can be written as two coupled
first-order equations, by introducing a new variable

Let y = ẋ . Then

ẋ = y
ẏ = a(1 − x2)y − x

(Not unique: we could make another choice, such as
z = ẋ + x .)

ẋ = y
ẏ = a(1 − x2)y − x

def dZ_dt(Z, t, a = 1.0):

x, y = Z[0], Z[1]

return [y, a*(1-x**2)*y - x]

def random_ic(scalefac=2.0): # generate initial condition

return scalefac*(2.0*np.random.rand(2) - 1.0)

ts = np.linspace(0.0, 40.0, 400)

nlines = 20

for ic in [random_ic() for i in range(nlines)]:

Zs = odeint(dZ_dt, ic, ts, args=(1.0))

plt.plot(Zs[:,0], Zs[:,1])

plt.plot([Zs[0,0]],[Zs[0,1]], ’s’) # plot the first point

plt.xlabel("x", fontsize=14)

plt.ylabel("y = dx/dt", fontsize=14)

All curves tend towards a limit cycle

Van der Pol oscillator: Limit cycles

Investigate how the limit cycle varies with the parameter a:

avals = np.arange(0.2, 2.0, 0.2) # parameters

minpt = int(len(ts) / 2) # look at late-time behaviour

for a in avals:

Zs = odeint(dZ_dt, random_ic(), ts, args=(a,))

plt.plot(Zs[minpt:,0], Zs[minpt:,1])

Van der Pol oscillator: Limit cycles

3 2 1 0 1 2 3

x

4

3

2

1

0

1

2

3

4

y
 =

 d
x
/d

t

