Course Summary (2019)

- 10 credit module in Autumn semester.
- 10 lectures + 10 lab classes + 10 office hours.
- **Assessment:** 3 assignments (90%) + 2 class tests (10%).
- Course website: http://sam-dolan.staff.shef.ac.uk/mas212
- Pre-requisite: MAS115.
- *Not a ‘soft option’.*
Module description

Aims

- To further develop the students’ programming skill in the context of scientific computing;
- To further develop the students’ independent investigation skills;
- To introduce the knowledge of scientific computing;
- To further develop the skills of data analysis.

Outcomes

- To be able to use Python to investigate mathematical problems numerically.
- To learn basic numerical methods for solving ordinary differential equations and linear algebraic equations.
- To be able to implement basic numerical methods using Python.
- To be able to analyse the basic properties of the methods.
Syllabus

Week 1: The Python language. Revision: variables; data types; arithmetic; list construction, comprehension, indexing, slicing & manipulation; for & while loops; control flow (if-elif-else; strings; string formatting. Functions. Modules & scripts. Built-in modules (math, cmath, random, decimal, datetime, io, os). Simple file I/O and string processing.

Week 3: Introduction to matplotlib. Simple plotting. Examples: (1) Estimating π by Monte Carlo integration; (2) the logistic map.

Week 4: Introduction to scipy. Solving ordinary differential equations (ODEs) with odeint. Initial conditions. Time-domain plots. Phase plots. Critical points and limit cycles. Examples: (1) Logistic equation; (2) Damped harmonic oscillator; (3) van der Pol oscillator; (4) Predator-prey equations.

Week 6: Implicit methods for solving ODEs. Error, order and stability of numerical methods.

Week 7: Animation with matplotlib.animation.FuncAnimation. Saving an animation. Examples: (1) The logistic map (again); (2) Driven damped oscillator and resonance.

Week 8: Fitting models to data. scipy.optimize.curve_fit. Least-squares method and linear algebra.

Week 9: Linear algebra. Gaussian elimination; iterative methods; convergence; condition number.

Week 10: Plotting in 3D and visualisation. Data analysis with pandas. Fourier transforms.
There are many books on Python, and on scientific computing.

I recommend:

Copies available in Information Commons
Assessment guide: Assignments

Three assignments (90%):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Set</th>
<th>Due(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Assignment #1</td>
<td>Week 1</td>
<td>Week 4</td>
</tr>
<tr>
<td>(2)</td>
<td>Assignment #2</td>
<td>Week 4</td>
<td>Week 9</td>
</tr>
<tr>
<td>(3)</td>
<td>Assignment #3</td>
<td>Week 8</td>
<td>Week 12</td>
</tr>
</tbody>
</table>

(*) All dates provisional.

In Assignment #1 you will submit one .py file

In Assignment #2 you will submit code and write a report in LaTeX.

In Assignment #3 you will submit code and a Beamer presentation.
Assessment guide: Class tests

- Two ‘open-book’ class tests: each 5% of module mark.
- Held in lab class in Weeks 2 and 11.
- Intended as ‘formative assessment’ (to improve skills).
- Test will use Jupyter Notebook.
- A test for last year, with answers, is available on the course website.
- If you cannot attend your Week 2 lab class, please email me.
- Submit class test 1 by **midnight Sun 13th Oct 2019** via
 http://somas-uploads.shef.ac.uk/mas212
Jupyter Notebook is . . .

. . . a web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document.
Installing Jupyter Notebook

On your computer:

The simplest way is to get Jupyter Notebook is to install the Anaconda distribution of Python 3:
https://www.anaconda.com/download/

Choose Python 3.7 version.
This comes with the most popular libraries for scientific computing.

On the managed desktop:

The Anaconda distribution should be pre-installed.
From the Start Menu, look for the folder Anaconda3 (64-bit)
Using Jupyter Notebook

- Enter Python code into a cell
- Press Shift-Enter to evaluate a cell
- Some example notebooks are shown on course website http://sam-dolan.staff.shef.ac.uk/mas212
- Notebooks can be converted to HTML or PDF.
- Notebooks may be shared on the web: http://nbviewer.jupyter.org/
- For an introduction to Jupyter Notebook see e.g. http://opentechschool.github.io/python-data-intro/core/notebook.html
Using Jupyter Notebook: Magic functions

Magic functions start with %. Examples:

- `%matplotlib inline`: include the plots in the workbook.
- `%timeit my_func()`: test the efficiency of your function.
- `%load my_module.py`: read the contents of `my_module.py` into a cell
- `%run my_module.py`: run the module as a script
- `?reversed`: get help on the `reversed` function (e.g.).
- `!`: execute a shell command.
Spyder

- Spyder is an Integrated Development Environment (IDE) for Python, . . .
- . . . the **Scientific PYthon Development EnviRonment**.

It includes
- A code editor with syntax colouring
- An IPython console
- Introspection: tab completion; go-to-definition, etc.
- Online help
- Object inspector
- Debugging features, such as breakpoints

You are encouraged to use Spyder and/or Jupyter Notebook:
- The class test will use Jupyter Notebook;
- Spyder is useful for developing code for the assignments, and for debugging.
Checklist for Weeks 1–4

() Work through the ‘Python basics’ slides, & videos on MOLE.

() Get started with Jupyter Notebook in Week 1 lab class.

() Browse the course website & example notebooks. http://sam-dolan.staff.shef.ac.uk/mas212

() Try the previous year’s class test.

() Week 2 lab class: Class Test. Submit by Sunday 13th Oct.

() Assignment #1 (Newton-Raphson) is due by Sunday 27th Oct.

NB. The add/drop window closes at the end of Week 3.