import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Theory:
The Fourier coefficients \tilde{X}_k of a data set $x_j = [x_0, x_1, \ldots, x_{n-1}]$ are found by applying a Discrete Fourier Transform (DFT),

$$\tilde{X}_k = \sum_{j=0}^{n-1} x_j \exp(-i 2\pi j k / n),$$ \hspace{1cm} (1)

where $k \in \mathbb{Z}$ and $\tilde{X}_{k+n} = \tilde{X}_k$. The data set may be reconstructed from \tilde{X}_k by applying the inverse DFT:

$$x_j = \sum_{k=0}^{n-1} \tilde{X}_k \exp(+i 2\pi j k / n).$$ \hspace{1cm} (2)

1. Finding the needle in the haystack. A noisy data set contains a hidden periodic signal!

(a) Download the first data set (`dft1.txt`), open it with `np.loadtxt()` and plot:

```python
ts, xs = np.loadtxt('dft1.txt')
plt.plot(ts, xs, 'r')
```

(b) Now take the DFT of the data, using functions in the `numpy.fft` module.

```python
X_tilde = np.fft.fft(xs)
```

(c) To seek the signal, plot \tilde{X}_k as a function of angular frequency ω_k, where $\omega_k = k\Delta\omega$ and $\Delta\omega = 2\pi/(n\Delta t)$. At what frequencies do ‘spikes’ appear?

```python
n = len(xs)  # Number of data points
dt = ts[1]-ts[0]  # Delta t, the time interval
dw = 2*np.pi/dt  # Delta omega, the frequency interval
ws = np.fft.fftfreq(n, d=1/dw)  # Get the frequency values, for x-axis.
plt.xlim(0, 20)
plt.plot(ws, X_tilde.real**2 + X_tilde.imag**2, 'k')
```

(d) Add axis labels and a title to your plot.
2. **Filtering.** Another signal is hidden in the second data set (dft2.txt). This data contains a low-frequency signal and high-frequency noise. Fortunately, we can separate the two by applying a frequency filter to \tilde{X}_k.

(a) Load the data set dft2.txt and plot.

(b) Take the DFT of the data, and plot this. What do you notice?

(c) Eliminate the high frequency part of \tilde{X}_k. Now take the inverse DFT to reconstruct the signal, using `np.fft.ifft`. Your signal should look something like the right-hand plot below.

3. **Parseval’s theorem.**

Parseval’s theorem states that, for any data set,

$$\sum_{j=0}^{n-1}|x_j|^2 = \frac{1}{n}\sum_{k=0}^{n-1} |\tilde{X}_k|^2$$

(a) By direct computation, demonstrate that the two data sets (dft1.txt and dft2.txt) satisfy Parseval’s theorem to high numerical accuracy.

(b) Show that Parseval’s theorem holds for a complex data set x_j of your own creation.

4. **Fast Fourier Transforms.**

Using the definition (1), write your own function to compute the DFT of a 1D numpy array of data. Now, using `timeit` and a randomly-generated data set with $n = 10^4$ data points, compare the speed of your function and the numpy function `np.fft.fft()`. How many times faster is the numpy function? Try this again for $n = 10^5$ and $n = 10^6$.