This is the course web page for MAS212 Scientific Computing and
Simulation in 2017/18.
Last year's material is here.
This year I will use MOLE for all essential course materials (lecture slides, assignments, class tests, etc.) and important information such as assessment deadlines.
MAS212 is a 10-credit, Level 2, first-semester module which covers various techniques in scientific computing, and their implementation in Python. The course is intended to follow on from MAS115 Mathematical Investigation Skills.
We will be using the Anaconda distribution of Python (version 3.6), which includes Jupyter Notebook and Spyder.
Anaconda3 is available on (the majority of) Managed Desktop machines. From the Start Menu, select the folder "Anaconda3 (64-bit)".
To install Anaconda on your own computer, use the link below, and choose the Python 3.6 version
There are many books on Python and scientific computing. For this course, I recommend:
A range of material is available on the web, including:
In this course we will use Jupyter notebooks to combine code, text, plots and media. To view a notebook in the browser, click on the links in the left column. (Alternatively, copy-and-paste the notebook's URL in to the box at nbviewer.jupyter.org).
To interact and modify a notebook, right-click on a link in the right column (.ipynb) and download to your Jupyter notebook directory.
Title | Description | notebook |
---|---|---|
Curve_Fit_Example | Shows how to (a) generate a data set with simulated noise; (b) save and then re-load the data; (c) fit the data to a simple model using scipy.optimize.curve_fit(). | .ipynb |
ODE_Example | Shows how to (a) solve a first-order single-variable ODE using scipy.integrate.odeint, and plot; (b) solve a second-order equation by writing as a pair of first-order equations; (c) solve predator-prey equations. | .ipynb |
Media_Example | Shows how to load and interact with various media: data, images, web pages, YouTube videos and maps. | .ipynb |
Fern | The Barnsley Fern: an image of a fern with self-similar (fractal) properties, generated by iterating certain affine transformations. | .ipynb |