This is the course web page for MAS212 *Scientific Computing and
Simulation* in **2016/17**.

MAS212 is a 10-credit, Level 2, first-semester module which covers various techniques in scientific computing, and their implementation in Python. The course is intended to follow on from MAS115 Mathematical Investigation Skills.

We will be using the Anaconda distribution of Python (version 3.5), which includes Jupyter Notebook and Spyder.

Anaconda3 is available on (the majority of) Managed Desktop machines. From "All Programs" on the Start Menu, select the folder "Anaconda3 (64-bit)".

To install Anaconda on your own computer, use the link below, and choose the Python 3.5 version

There are many books on Python and scientific computing. For this course, I recommend *Learning Scientific Programming with Python* by Christian Hill (Cambridge University Press, 2015). Copies are available in the library.

For help from classmates and tutors, please use the Discussion Board

A range of material is available on the web, including:

- Think Python: How to think like a computer scientist
- A Crash Course in Python for Scientists
- Python Scientific Lecture Notes

In this course we will use Jupyter notebooks to combine code, text, plots and media. To view a notebook in the browser, click on the links in the left column. (Alternatively, copy-and-paste the notebook's URL in to the box at nbviewer.jupyter.org).

To interact and modify a notebook, right-click on a link in the right column (.ipynb) and download to your Jupyter notebook directory.

Title | Description | notebook |
---|---|---|

Curve_Fit_Example | Shows how to (a) generate a data set with simulated noise; (b) save and then re-load the data; (c) fit the data to a simple model using scipy.optimize.curve_fit(). | .ipynb |

ODE_Example | Shows how to (a) solve a first-order single-variable ODE using scipy.integrate.odeint, and plot; (b) solve a second-order equation by writing as a pair of first-order equations; (c) solve predator-prey equations. | .ipynb |

Media_Example | Shows how to load and interact with various media: data, images, web pages, YouTube videos and maps. | .ipynb |

Fern | The Barnsley Fern: an image of a fern with self-similar (fractal) properties, generated by iterating certain affine transformations. | .ipynb |

A short video (from 2014) shows how to take the test on the managed desktop machines.

Description | Links | Due |
---|---|---|

(2016) Class Test 2 with answers |
.ipynb .html | -- |

(2016) Class Test 2 | .ipynb | 5pm Mon 12th Dec |

(2016) Class Test 1 with answers |
.ipynb .html Marker's notes | -- |

(2016) Class Test 1 | .ipynb | 5pm Mon 10th Oct |

To attempt a test, right click on ".ipynb" link, save the file in your notebooks directory, and then open the notebook. To view a test, left click on the ".html" link. Completed tests will be submitted here.

# | Title | Summary | Due | Feedback |
---|---|---|---|---|

1 | Newton-Raphson method | Use Python to implement the Newton-Raphson method for finding the roots of differentiable functions. | Sun 23rd Oct (23:59pm). |
Feedback points Example code |

2 | Dynamics of two-species models | Investigating properties of predator-prey equations | Sun 20th Nov (23:59pm) |
Report (.pdf) Source (.tex) Code (.ipynb) |

3 | Detecting extrasolar planets | Model-fitting and orbital dynamics. | Sun 18th Dec (23:59pm) |
Report Code (.html | .ipynb) |