
MAS212 Scientific Computing and Simulation

Dr. Sam Dolan

School of Mathematics and Statistics,
University of Sheffield

Autumn 2016

http://sam-dolan.staff.shef.ac.uk/mas212/

G30 Hicks Building
s.dolan@sheffield.ac.uk

http://sam-dolan.staff.shef.ac.uk/mas212/

Today’s lecture

Fitting data to models

Theory:

The line of best fit

The method of least squares

Linear models

Non-linear models

Using Python:

scipy.optimize.curve fit()

Example #1: Least-squares fit to quadratic model
f (x , βi) = β0 + β1x + β2x2.

Example #2: Fit to non-linear model
f (x , βi) = β0 exp(β1x) sin(10β2x) + β3.

Example: Fitting a straight line

Suppose I have a data set (xi , yi) for i = 0 . . .N − 1

How do I find the line of best fit?

That is, how do I fit a two-parameter model to the data?

f (x ; β0, β1) = β0+β1x where β0, β1 are model parameters

Example: Fitting a straight line

The textbook formulae for linear regression are

β1 =
covar(x , y)

var(x)
, β0 = ȳ − β1x̄ ,

var(x) ≡
1
N

N∑
i=1

(xi − x̄)2,

covar(x , y) ≡
1
N

N∑
i=1

(xi − x̄)(yi − ȳ).

Here an over-bar denotes the mean:

x̄ ≡
1
N

N∑
i=1

xi , ȳ ≡
1
N

N∑
i=1

yi

Where do these formulae derive from?

Least squares method
Suppose we have a model f (x , βj) with parameters βj .

We wish to adjust the parameters βj of the model to
achieve the best fit to a given data set (xi , yi).

In the least squares method, the optimal values βj are
those that minimize the sum of squared residuals:

S ≡
∑

i

r2
i , where ri ≡ yi − f (xi , βj).

Here ri are residuals: the differences between the y -data
and the model.

To find the minimum of S we set all of its partial derivatives
to zero w.r.t. the parameters βj :

∂S
∂βj

= 0.

Least squares method
Let’s apply this method to derive the parameters of the line
of best fit.

Model: f (x , βj) = β0 + β1x

The sum-of-squared-residuals is

S =
∑

i

r2
i =

∑
i

(yi − β0 − β1xi)
2

S has a stationary point where ∂S
∂β0

= 0 = ∂S
∂β1

The partial derivative of S w.r.t. β0 is

∂S
∂β0

= 2
∑

i

ri
∂ri

∂β0
= −2

∑
i

(yi − β0 − β1xi) = 0

Divide by N to write as

1
N

∑
i

(yi − β0 − β1xi) = 0 ⇒ y = β0 + β1x

Least squares method

Partial derivative w.r.t. β0 ⇒ y = β0 + β1x

Partial derivative w.r.t. β1 :

∂S
∂β1

= 2
∑

i

ri
∂ri

∂β1
= −2

∑
i

(yi − β0 − β1xi) xi = 0

Divide by N and rearrange to get

xy = β0x + β1x2

Solving the boxed equations for β1 and β0 gives

β1 =
xy − x y

x2 − x2
=

covar(x , y)

var(x)

and β0 = y − β1x .

Linear models

We showed that the method of least squares leads to the
standard formulae for parameters β0, β1 in the straight-line
model f (x) = β0 + β1x .

Next we will consider the wide class of linear models:

f (x , βj) =

m−1∑
j=0

βj φj(x)

where φj(x) is any function of x .

Note that linear models are linear in the parameters, but
not necessarily linear in x .

e.g. f (x) = β0 + β1x + β2x2 is a linear model,
but f (x) = exp (β0x) is not.

Linear models
Consider a linear model with m parameters

f (x , βj) =

m−1∑
j=0

βj φj(x)

and a data set with N data points, such that N > m.

The best-fit parameters βj are found by solving matrix
equations known as the normal equations

XT Xβ = XT y

Here β = (β0, β1, . . .)T and y = (y0, y1, . . .)T are vectors of
length m and N, respectively, and X is N ×m :

X ≡


φ0(x0) φ1(x0) . . . φm−1(x0)
φ0(x1) φ1(x1) . . . φm−1(x1)
...

...
...

φ0(xN−1) φ1(xN−1) . . . φm−1(xN−1)



Linear models
Let’s derive the normal equations for linear model

f (x , βj) =
∑

j

βj φj(x)

Let Xij denote the element in i th row, j th column of X.

Xij = φj(xi)

Consider the i th residual:

ri = yi − f (xi , βj) = yi −
∑

j

βjφj(xi)

and its partial derivative w.r.t. βk :

∂ri

∂βk
= −

∑
j

∂βj

∂βk
φj(xi) = −

∑
j

δjkφj(xi) = −φk (xi) = −Xik .

Linear models
Now minimize the sum-of-square-residuals S:

∂S
∂βk

=
∂
∂βk

∑
i

r2
i

 = 2
∑

i

ri
∂ri

∂βk
= 0

Inserting
∂ri

∂βk
= −Xik = −(X T)ki and ri = yi −

∑
j

Xijβj

⇒ −

∑
i

(X T)ki

yi −
∑

j

Xijβj

 = 0

This is the j th row of a vector in the matrix equation,

XT (y − Xβ) = 0,

or, rearranging,
XT Xβ = XT y.

Linear models

XT Xβ = XT y.

How should we solve the matrix equations to find best-fit
parameters β = (β0, β1, . . .)T ?

Naive method: find the inverse of the m ×m square matrix
XT X and apply to both sides.

Better method:
Check that equation is well-conditioned.
Apply Gaussian elimination or other efficient method.

(We will consider linear algebra and methods for solving
Ax = b in the next lecture)

Linear models

XT Xβ = XT y.

Here’s a crude implementation, to see the method working
in practice. Let’s consider a random quadratic with noise.

import numpy as np

import matplotlib.pyplot as plt

Make an example data set: random quadratic with noise

N = 100

coef = np.random.random(3)

x = np.linspace(-5, 5, N)

y0 = coef[0]*x**2 + coef[1]*x + coef[2]

sigma = 1.0

y = y0 + sigma*np.random.normal(size=N)

Linear models

XT Xβ = XT y.

Fit a quadratic

m = 3 # number of parameters

X = np.zeros((N, m)) # an N x m matrix

for i in range(N):

X[i,:] = 1.0, x[i], x[i]**2

A = np.dot(np.transpose(X), X)

b = np.dot(np.transpose(X), y)

beta = np.linalg.solve(A, b) # best-fit parameters

Plot

y_est = beta[0] + beta[1]*x + beta[2]*x**2

plt.plot(x, y, ’s’); plt.plot(x, y_est, ’r-’)

plt.show()

Example: Least-squares fit to quadratic
f (x , βi) = β0 + β1x + β2x2.

Non-linear models

What about non-linear models? e.g.

β1xβ0 , or β0 sin(β1x + β2)

There is no closed-form solution

Start with a guess β[0] and iterate to get β[k] . . .

Test for convergence:∥∥∥β[k+1]
− β[k]

∥∥∥ ≤ ε

Non-linear models

The Gauss-Newton method

Choose a starting guess for parameters β[0]

Apply
β[k+1] = β[k] + ∆β

where ∆β is the solution to(
JT J

)
∆β = JT ∆y

Here ∆y = [∆yi] where

∆yi = yi − f
(
xi , β

[k]
j

)
.

The Jacobian J = [Jij] is

Jij =
∂f
∂βj

(xi , β
[k]
j)

Non-linear models

Iterative methods (such as Gauss-Newton) require an
initial guess.

Convergence is not guaranteed. Convergence depends
on choice of initial guess (cf. Newton-Raphson method).

There may be multiple minima!

If the model is linear, the iterative approach will find the
solution in one step.

Limitations / Extensions / Questions

We have assumed that there is no error in independent variable x .
What if this is not the case? (see Errors-in-variables models)

How do we estimate the uncertainties in the best-fit parameters? (see
‘boot-strap’ method).

What if there are several dependent or independent variables?

What if we are not sure of the form of the underlying model?

Adding more parameters always leads to a better fit . . . but how do we
determine whether extra parameters are really necessary?

What is the connection between the least-squares method and the
normal distribution?

Fitting data with Python

The module scipy.optimize provides several useful
functions:

minimize : find minimum of a function

leastsq : minimize the sum-of-squares of a set of
equations

curve fit : fit a non-linear model to data using
least-squares method

fsolve : find the roots of a function

Let’s try using curve fit with a non-linear model:

f (x) = β0 exp(β1x) sin(10β2x) + β3

Fitting data with Python

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

def func(x, a, b, c, d):

"""A function which is non-linear in its parameters a,b,c,d."""

return a*np.exp(b*x)*np.sin(10*c*x) + d

Make a sample data set.

N = 100

m = 4

coef = np.random.random(m)

x = np.linspace(0, 5, N)

y0 = func(x, coef[0], coef[1], coef[2], coef[3])

sigma = 1.0

y = y0 + sigma*np.random.normal(size=N)

Fitting data with Python

params0 = [0.5,0.5,coef[2],0.5] # Try changing this!

I find that the results are not good unless

the starting guess for the frequency is accurate!

ps, pcov = curve_fit(func, x, y0, p0=params0)

’ps’ is array of best-fit parameters.

’pcov’ is the covariance matrix.

y_true = func(x, coef[0], coef[1], coef[2], coef[3])

y_est = func(x, ps[0], ps[1], ps[2], ps[3])

plt.plot(x, y, ’s’)

plt.plot(x, y_true, ’-’)

plt.plot(x, y_est, ’r-’)

Example: Fit to non-linear model
f (x , βi) = β0 exp(β1x) sin(10β2x) + β3.

