MAS212 Scientific Computing and Simulation

Dr. Sam Dolan

School of Mathematics and Statistics,
University of Sheffield

Autumn 2016

http://sam-dolan.staff.shef.ac.uk/mas212/

G30 Hicks Building
s.dolan@sheffield.ac.uk

http://sam-dolan.staff.shef.ac.uk/mas212/

Today’s lecture

@ Fitting data to models
@ Theory:
@ The line of best fit

e The method of least squares
e Linear models
@ Non-linear models

@ Using Python:

@ scipy.optimize.curve_fit()

16

14}

12+

10+

Example #1: Least-squares fit to quadratic model
f(X,ﬁ,') = o+ P1X + ﬁng.

15

1 2 3 4 5

Example #2: Fit to non-linear model
f(x, Bi) = Boexp(B1x)sin(10B2x) + Bs.

Example: Fitting a straight line

@ Suppose | have a data set (x;, y;) fori=0...N -1
@ How do | find the line of best fit?

@ That is, how do | fit a two-parameter model to the data?

f(x; Bo, B1) = Po+P1X where fo, f1 are model parameters

Example: Fitting a straight line
@ The textbook formulae for linear regression are

_ covar(x, y)
var(x)

, Bo =y —B1X,

@ Here an over-bar denotes the mean:

1 & 1
XENZAXi’ y N

@ Where do these formulae derive from?

ﬂ[\ﬂz

y.

Least squares method
@ Suppose we have a model f(x, ;) with parameters ;.

@ We wish to adjust the parameters g; of the model to
achieve the best fit to a given data set (x;, ;).

@ In the least squares method, the optimal values g; are
those that minimize the sum of squared residuals:

S= Z r,?, where ri =y — f(Xi, Bj)-
i

@ Here r; are residuals: the differences between the y-data
and the model.

@ To find the minimum of S we set all of its partial derivatives
to zero w.r.t. the parameters f;:
aS

22 _o.
Ip;

Least squares method

@ Let’s apply this method to derive the parameters of the line
of best fit.

@ Model: f(x,B;) = Bo + p1x

@ The sum-of-squared-residuals is
S= Z = Z (¥i = Bo = p1X))°
i i

@ S has a stationary point where 28 =0 = 28

9o 9P
@ The partial derivative of Sw.r.t. fg is

) or
8—%222 Iaﬁ :—ZZ —Bo—p1x) =0

@ Divide by N to write as

NZ ~p1x) =0 = [F=fo+piX

Least squares method

@ Partial derivative w.r.t. fo

@ Partial derivative w.r.t. B :
JdS ar
9B 22 i 22

@ Divide by N and rearrange to get

=

Y = Po+piX

—BPo—P 1X;) X; =0

Xy = BoX + B X2

@ Solving the boxed equations for g1 and g gives

X7 _

covar(x, y)

pr=

and ﬁo = }_/— ‘317

X2 —

2

var(x)

Linear models

@ We showed that the method of least squares leads to the
standard formulae for parameters fo, 1 in the straight-line
model f(x) = Bo + 1 X.

@ Next we will consider the wide class of linear models:

f(x, Bj) = Z Bj Pi(x

where ¢;(x) is any function of x.

@ Note that linear models are linear in the parameters, but
not necessarily linear in x.

@ eg. f(x)=po+p1x+P2x? isalinear model,
but f(x) =exp(Box) is not.

Linear models
@ Consider a linear model with m parameters

f(x, Bj) = Z Bi bi(x

and a data set with N data pomts, such that N > m.

@ The best-fit parameters §; are found by solving matrix
equations known as the normal equations

X™Xp =Xy

@ Here B = (Bo,B1,..-)T andy = (yo,1,...)T are vectors of
length m and N, respectively, and Xis Nx m :

$o(X) P1(x0) ... Pm-1(X0)

X = Po(x1) P1(x1) ... Om1(X1)

(PO();N—1) ¢1();N—1) ¢m—1(‘XN—1)

Linear models

@ Let’s derive the normal equations for linear model

f(x, Bj) Zﬁj@

@ Let X denote the element in ith row, jth column of X.

Xij = ¢j(xi)

@ Consider the ith residual:

ri=yi—f(x,Bj) = Zﬁ/‘?} (x)

and its partial derivative w.r.t. f:

ar; d
ﬁ = Z ﬁ/ =- Zj: Ojkdj(Xi) = —Pi(X;) = —

Linear models

@ Now minimize the sum-of-square-residuals S:
0S8 an

2 —
9ﬁk 3ﬁk [Z] Z i aﬁk

@ Inserting % =-Xk=-(X") and =y - Z Xipj
j

- Z(X Yi— Z XiBj
i J
@ This is the jth row of a vector in the matrix equation,

X" (y-Xg) =

or, rearranging,
X™Xp=XTy.

Linear models

X™Xp =XTy.

@ How should we solve the matrix equations to find best-fit
parameters B = (Bo, 1,...)7 ?

@ Naive method: find the inverse of the m x m square matrix
XTX and apply to both sides.

@ Better method:

o Check that equation is well-conditioned.
e Apply Gaussian elimination or other efficient method.

@ (We will consider linear algebra and methods for solving
Ax = b in the next lecture)

Linear models

X™Xg=Xy.

@ Here’s a crude implementation, to see the method working
in practice. Let’s consider a random quadratic with noise.

import numpy as np

import matplotlib.pyplot as plt

Make an example data set: random quadratic with noise
N = 100

coef = np.random.random(3)

X = np.linspace(-5, 5, N)

y0 = coef[0]*x**2 + coef[1]*x + coef[2]

sigma = 1.0

y = y0® + sigma*np.random.normal (size=N)

Linear models

X™Xp =XTy.

Fit a quadratic
m= 3 # number of parameters
X = np.zeros((N, m)) # an N x m matrix
for i in range(N):
X[i,:] = 1.0, x[i], x[i]**2
A = np.dot(np.transpose(X), X)
b = np.dot(np.transpose(X), y)
beta = np.linalg.solve(A, b) # best-fit parameters

Plot

y_est = beta[0] + beta[l]*x + beta[2]*x**2
plt.plot(x, y, ’s’); plt.plot(x, y_est, 'r-’)
plt.show()

12

10+]

Example: Least-squares fit to quadratic
f(X,ﬁ,') = o+ P1X + ﬁng.

Non-linear models

@ What about non-linear models? e.g.

B1xPo, or Bosin(Bix +pB2)
@ There is no closed-form solution
e Start with a guess g% and iterate to get glf1 ...

@ Test for convergence:

||ﬁ[k+1] _ﬁ[k]” <e

Non-linear models

The Gauss-Newton method
@ Choose a starting guess for parameters gl

@ Apply
ﬁ[k+1] _ ﬁ[k] +AB

where Ap is the solution to
(7)) 2 =Jd7Ay
@ Here Ay = [Ay;] where
Ay = yi—f(x,1).
@ The Jacobian J = [Jj] is

of
Jj = a_‘Bj(Xi/ Bi)

Non-linear models

@ lterative methods (such as Gauss-Newton) require an
initial guess.

@ Convergence is not guaranteed. Convergence depends
on choice of initial guess (cf. Newton-Raphson method).

@ There may be multiple minima!

@ If the model is linear, the iterative approach will find the
solution in one step.

Limitations / Extensions / Questions

@ We have assumed that there is no error in independent variable x.
What if this is not the case? (see Errors-in-variables models)

@ How do we estimate the uncertainties in the best-fit parameters? (see
‘boot-strap’ method).

@ What if there are several dependent or independent variables?
@ What if we are not sure of the form of the underlying model?

@ Adding more parameters always leads to a better fit . . . but how do we
determine whether extra parameters are really necessary?

@ What is the connection between the least-squares method and the
normal distribution?

Fitting data with Python

@ The module scipy.optimize provides several useful
functions:

@ minimize : find minimum of a function

@ leastsq : minimize the sum-of-squares of a set of
equations

e curve_fit : fit a non-linear model to data using
least-squares method

@ fsolve : find the roots of a function

@ Let’s try using curve_fit with a non-linear model:

f(x) = Boexp(B1x)sin(10B2x) + B3

Fitting data with Python

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def func(x, a, b, c, d):
"""A function which is non-linear in its parameters a,b,/c,d."’

return a*np.exp(b*x)*np.sin(10*c*x) + d

Make a sample data set.

N = 100

m=4

coef = np.random.random(m)

X = np.linspace(®, 5, N)

y0 = func(x, coef[0], coef[l], coef[2], coef[3])
sigma = 1.0

y = y0 + sigma*np.random.normal (size=N)

Fitting data with Python

params® = [0.5,0.5,coef[2],0.5] # Try changing this!
I find that the results are not good unless
the starting guess for the frequency is accurate!

ps, pcov = curve_fit(func, x, y0, pO=params®)

’ps’ is array of best-fit parameters.

’pcov’ is the covariance matrix.

y_true = func(x, coef[0], coef[1], coef[2], coef[3])
y_est = func(x, ps[0], ps[1], ps[2], ps[3D)
plt.plot(x, y, ’s’)

plt.plot(x, y_true, '-’)

plt.plot(x, y_est, 'r-’)

15

1 2 3 4 5

Example: Fit to non-linear model
f(x,Bi) = Boexp(B1x)sin(10B2x) + Bs.

